
14 Shrivastava, Singh and Tiwari

Implementation of Radix-2 Booth Multiplier and Comparison with
Radix-4 Encoder Booth Multiplier

Sandeep Shrivastava*, Jaikaran Singh* and Mukesh Tiwari*
Department of Electronics and Communications,

*SSSITS, Sehore, (M.P.)

(Received 5 Jan., 2011, Accepted 10 Feb., 2011)

ABSTRACT : This paper Describes implementation of radix-2 Booth Multiplier and this implementation is
compared with Radix-4 Encoder Booth Multiplier. This Implementation describes in the Form of RTL Schematic
and Comparison is also done by using RTL Schematic. A Conventional Booth Multiplier consists of the Booth
Encoder, the partial-product tree and carry propagate adder [2, 3]. Different schemes are addressed to improve the
area and circuit speed effectively.

I. INTRODUCTION
Multipliers are key components of many high

performance systems such as FIR filters, Microprocessor,
digital signal processors, etc. A systems performance is
generally determined by the performance of the multiplier
because the multiplier is generally the slowest element in
the system. Furthermore, it is generally the most area
consuming. Hence, optimizing the speed and area of the
multiplier is a major design issue however; area and speed
are usually conflicting constraints so that improving speed
results mostly in larger areas [5, 6].

Booth Multiplier reduces number of iteration step to
perform multiplication as compare to Conventional steps.
Booth algorithm ‘scans’ the multiplier operand and skips
chains of This algorithm can reduce the number of additions
required to produce the result compared to Conventional
Multiplication algorithm, where each bit of the multiplier is
multiplied with the multiplicand and the partial products
are aligned and added together [4]. More interestingly the
number of additions is data dependent, which makes this
algo

II. COMMON FEATURES OF  MULTIPLIERS
(i ) Counterflow Organization:  A novel multiplier

organization is introduced, in which the data bits flow in
one direction, and the Booth commands are piggybacked
on the acknowledgments flowing in the opposite direction.

(ii) Merged Arithmetic/Shifter Unit: An architectural
optimization is introduced that merges the arithmetic
operations and the shift operation into the same function
unit, thereby obtaining significant improvement in area,
energy and speed.

(iii ) Overlapped Execution:  The entire design is
pipelined at the bit-level, which allows overlapped execution
of Proceedings of multiple iterations of the Booth algorithm,
including across successive multiplications. As a result,
both the cycle time per Booth iteration, as well as the
overall cycle time per multiplication are significantly
improved.

(iv) Modular Design: The design is quite modular,
which allows the implementation to be scaled to arbitrary
operand widths without the need for gate     resizing, and
without incurring any overhead on iteration time.

(v) Precision-Energy Trade-Off: Finally, the
architecture can be easily modified to allow dynamic
specification of operand widths, i.e., successive operations
of a given multiplier implementation could operate upon
different word length

III. RADIX-2 BOOTH MULTIPLIER
Our multiplier is of the iterative Radix-2 Booth Multiplier

type, implemented using asynchronous circuits [6, 7]. An
iterative implementation was chosen, as opposed to a
combinational array type, for higher area efficiency. A Booth
implementation was chosen so as to uniformly handle signed
as well as unsigned operands. However, a minor
modification to the controller can easily transform our design
into a simple (i.e. non-Booth) iterative multiplier.
A. Radix-2 Booth Multiplication Algorithm

Booth algorithm gives a procedure for multiplying
binary integers in signed –2’s complement representation.
The booth algorithm with the following example:

Example: 2 ten × (–4) ten
0010 two × 1100 two
Step 1: Making the Booth table
I. From the two numbers, pick the number with the

smallest difference between a series of consecutive
numbers, and make it a multiplier.

i.e., 0010 — From 0 to 0 no change, 0 to 1 one change,
1 to 0 another change, and so there are two changes on
this one,

1100 — From 1 to 1 no change, 1 to 0 one change, 0
to 0 no change, so there is only one change on this one.

Therefore, multiplication of 2 × (–4), where 2 ten (0010
two) is the multiplicand and (–4) ten (1100two) is the
multiplier.

II. Let X = 1100 (multiplier)
     Let Y = 0010 (multiplicand)

     Take the 2’s complement of Y and call it –Y

      –Y = 1110

III. Load the X value in the table.

IV. Load 0 for X-1 value it should be the previous first
least significant bit of X

International Journal on Emerging Technologies 2(1): 14-16(2011) ISSN : 0975-8364
et



Mishra, Kumar and Nagaria 15

V. Load 0 in U and V rows which will have the product
of X and Y at the end of operation.

VI. Make four rows for each cycle; this is because we
are multiplying four bits numbers.

Step 2:  Booth Algorithm

Booth algorithm requires examination of the multiplier
bits, and shifting of the partial product. Prior to the shifting,
the multiplicand may be added to partial product,
subtracted from the partial product, or left unchanged
according to the following rules:

Look at the first least significant bits of the multiplier
“X”, and the previous least significant bits of the multiplier
“X - 1”.

I  0 0 Shift only

   1 1 Shift only.

   0 1 Add Y to U, and shift

   1 0 Subtract Y from U, and shift or add (-Y) to U
and shift

II Take U & V together and shift arithmetic right shift
which preserves the sign bit of 2’s complement number.
Thus   a positive number remains positive, and a negative
number remains negative.

III Shift X circular rights shift because this will prevent
us from using two registers for the X value.

B. Synthesis of Radix – 2 Booth Multiplier

This is RTL Schematic of Radix-2 Booth Multiplier
shown in figure:1. Here first block is for finding the
Multiplier between two given numbers and Second block
is for the Multiplication process.

Fig. 1. RTL Schematic of Radix–2 Booth Multiplier.

To represent detail of Second step perform in Algorithm
is given in Fig. 2.

Fig. 2. Detail RTL Schematic of Second step

To represent detail of first Step perform in the Algorithm
is given Fig. 3.

Fig. 3. Detail RTL Schematic of first step.

IV. RADIX-4 ENCODER BOOTH MULTIPLIER

Radix-4 Booth algorithm which scan strings of three
bits with the algorithm given below:

(1) Extend the sign bit 1 position if necessary to ensure
that n is even.

(2) Append a 0 to the right of the LSB of the multiplier.

(3) According to the value of each vector, each Partial
Product will be 0, +y, –y, +2y or –2y. The negative values of
y are made by taking the 2’s complement.

The negative values of y are made by taking the 2’s
complement and Carry-look-ahead (CLA) fast adders are
used. The multiplication of y is done by shifting y by one
bit to the left. Thus, in any case, in designing n-bit parallel
multipliers, only n/2 partial products are generated [10,11,12].

To Booth recode the multiplier term, we consider the
bits in blocks of three, such that each block overlaps the
previous block by one bit. Grouping starts from the LSB,
and the first block only uses two bits of the multiplier.

Let us consider an example:

Multiplicand - (001011)2
Multiplier - (010011)2
First of all we will make group of three bits for

Multiplier

Encoding for Radix-4 Booth Multiplier will be done
according to the table: 3.1 given below:

Table1: Encoding of Radix-4 Booth Multiplier.
Block Partial Product

000 0

001 1*Multiplicand

010 1*Multiplicand

011 2*Multiplicand

100 –2*Multiplicand

101 –1*Multiplicand

110 –1*Multiplicand

111 0



16 Shrivastava, Singh and Tiwari

Fig. 4. Grouping of bits for Multiplier.

From the table 1.
(010)2 -  1
(001)2  - 1
(110)2 - (-1)
 Therefore Multiplicand is multiplied with the three

encoded digit which is 1, 1 and (–1).
(i) –1 * (001011)2 = (001011)2
And 1111 added with the result because of negative

sign. Thus final answer of multiplication of (-1) is
(1111001011)2 {Negative term Sign Extended}

(ii) 1 * (001011)2 = (001011)2
(iii) 1 * (001011)2 = (001011)2
(iv) (00001)2 are added with these three resultants as

an error correction for negation.
         1 1 1 1 1 1 0 1 0 0  Negative term sign extended
            0 0 1 0 1 1
      0 0 1 0 1 1
      0 0 0 0 1    Error Correction for Negation
     0 0 1 1 0 1 0 0 0 1  Discarding the carried high bit

A. Synthesis of Radix-4 Booth Multiplier

Fig. 5. RTL schematic of Radix-4 Encoder Multiplier.

This is detail diagram of RTL Schematic of Radix-4
Booth Multiplier which provide Output according to the
Algorithm.

V. CONCLUSION
Radix-2 Booth Multiplier is implemented here; the

complete process of the implementation is giving higher
speed of operation. The four cycle of shifting process
including addition and subtraction is available. Now at the
same time RTL Schematic generated here is giving the
comfortable execution of it. This RTL Schematic can be
implemented in FPGA CPLD kit that will give the proper
Output.

Now this RTL Schematic of Radix-2 Booth Multiplier is
compared with implemented RTL Radix-4 Encoder Booth
Multiplier. The Speed and Circuit Complexity is compared,
Radix-4 Booth Multiplier is giving higher speed as compared
to Radix-2 Booth Multiplier and Circuit Complexity is also
less as compared to it. It is completely depend on the
Algorithm used in both Multipliers.

REFRENCE
[1] A High-Speed Multiplication Algorithm Using Modified

Partial Product Reduction Tree P. Asadee, International
Journal of Electrical and Electronics Engineering, 4: 4,
(2010).

[2] N. Jiang and D. Harris, “Parallelized Radix-2 Scalable
Montgomery Multiplier,” submitted to IFIP Intl. Conf. on
VLSI, (2007).

[3] D. Kudeeth., “Implementation of low-power multipliers”,
Journal of low-power electronics, vol. 2, 5-11, (2006).

[4] Y.N. Ching, “Low-power high-speed multipliers”, IEEE
Transactions on Computers, vol. 54, no. 3, pp. 355-361,
2005.

[5] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S.
Hsu, “An improved unified scalable radix-2 Montgomery
multiplier,” Proc. 17th IEEE Symp. Computer Arithmetic,
pp. 172-178, 2005.

[6] K. Kelley and D. Harris, “Parallelized very high radix
scalable Montgomery multipliers,” Proc. Asilomar Conf.
Signals, Systems, and Computers, pp. 1196-1200, Nov.
(2005).

[7] J. Hensley, A. Lastra, and M. Singh. An area- and energy-
efficient asynchronous booth multiplier for mobile devices.
In Proc. Int. Conf. Computer Design (ICCD), (2004).

[8] A. Efthymiou, W. Suntiamorntut, J. Garside, and L.
Brackenbury. An asynchronous, iterative implementation
of the original Booth multiplication algorithm. In Proc.
Int. Symp. On Advanced Research in Asynchronous Circuits
and Systems, pages 207–215. IEEE Computer Society Press,
Apr. (2004).

[9] P. D. Chidgupkar and M. T. Karad, “The Implementation
of Vedic Algorithms in Digital Signal Processing”, Global J.
of Engg. Edu, vol. 8, no. 2, pp. 153–158, (2004).

[10] M. Sheplie, “High performance array multiplier”, IEEE
transactions on very large scale integration systems, vol.
12, no. 3, pp. 320-325, (2004).

[11] Design of a Novel Radix-4 Booth Multiplier, Hsin-Lei Lin,
Robert C. Chang, Ming-Tsai ChanDepartment of Electrical
Engineering, National Chung Hsing University, Taichung,
TaiwanThe 2004 IEEE Asia-Pacific Conference on Circuits
and Systems, December 6-9, (2004).

[12] H. Lee, “A High-Speed Booth Multiplier”, ICCS, (2002).


